V matematické disciplíně teorie uspořádání se používá Hasseův diagram (pojmenovaný po Helmutu Hasseovi) k zobrazení konečné částečně uspořádané množiny. Konkrétně pro uspořádanou množinu (S,≤) reprezentujeme v Hasseově diagramu každý prvek množiny S jako vrchol grafu. Dva vrcholy se spojí čarou (hranou) vedenou zdola nahoru od x k y, jestliže x < y a neexistuje takové z, že x < z < y (zde je < binární relace získaná z ≤ odejmutím prvků (x,x) pro každé x).

PropertyValue
dbpedia-owl:abstract
  • V matematické disciplíně teorie uspořádání se používá Hasseův diagram (pojmenovaný po Helmutu Hasseovi) k zobrazení konečné částečně uspořádané množiny. Konkrétně pro uspořádanou množinu (S,≤) reprezentujeme v Hasseově diagramu každý prvek množiny S jako vrchol grafu. Dva vrcholy se spojí čarou (hranou) vedenou zdola nahoru od x k y, jestliže x < y a neexistuje takové z, že x < z < y (zde je < binární relace získaná z ≤ odejmutím prvků (x,x) pro každé x). Říkáme také, že y pokrývá x nebo že y je bezprostřední předchůdce prvku x. Vrcholy grafu musí být umístěny tak, aby každá hrana spojovala právě dva vrcholy.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
  • 53643 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 1371 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 13 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 14650632 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
dbpedia-owl:wikiPageWikiLinkText
  • Hasseových diagramů
  • Hasseův diagram
dcterms:subject
rdfs:comment
  • V matematické disciplíně teorie uspořádání se používá Hasseův diagram (pojmenovaný po Helmutu Hasseovi) k zobrazení konečné částečně uspořádané množiny. Konkrétně pro uspořádanou množinu (S,≤) reprezentujeme v Hasseově diagramu každý prvek množiny S jako vrchol grafu. Dva vrcholy se spojí čarou (hranou) vedenou zdola nahoru od x k y, jestliže x < y a neexistuje takové z, že x < z < y (zde je < binární relace získaná z ≤ odejmutím prvků (x,x) pro každé x).
rdfs:label
  • Hasseův diagram
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of