ARIMA (zkratka anglického AutoRegressive Integrated Moving Average, „autoregresní integrovaný klouzavý průměr“) je třída modelů časových řad, sloužících k pochopení vlastností časových řad a k předpovědi jejich chování do budoucnosti. Model ARIMA má tři části: autoregresní (AR) vyjadřuje, že část hodnoty časové řady se dá vysvětlit jako lineární kombinace minulých hodnot (tedy regrese „sama na sebe“, odkud je řecká předpona auto-, sám-).

PropertyValue
dbpedia-owl:abstract
  • ARIMA (zkratka anglického AutoRegressive Integrated Moving Average, „autoregresní integrovaný klouzavý průměr“) je třída modelů časových řad, sloužících k pochopení vlastností časových řad a k předpovědi jejich chování do budoucnosti. Model ARIMA má tři části: autoregresní (AR) vyjadřuje, že část hodnoty časové řady se dá vysvětlit jako lineární kombinace minulých hodnot (tedy regrese „sama na sebe“, odkud je řecká předpona auto-, sám-). Řád AR složky se označuje p a vyjadřuje kolik časových intervalů zpět se tato složka modelu „dívá“. Například p = 2 znamená, že současnou hodnotu řady vysvětlujeme pomocí minulé a předminulé hodnoty, tedy maximálně dva kroky dozadu. integrační (I) znamená diferenci časové řady před aplikací modelů AR a/nebo MA. Řád integrační složky se značí d a znamená, kolikrát po sobě se diference aplikuje. klouzavé průměry (MA) vyjadřuje, že část chyby (rezidua) časové řady se dá vysvětlit jako lineární kombinace minulých chyb. Řád MA složky se označuje q a (podobně jako u AR parametru p) vyjadřuje z kolika časových intervalů v minulosti se chyby v modelu uplatní.Celkem se model podle svých řádů značí ARIMA(p,d,q). Pro vystižení sezonality časových řad se základní model může doplnit ještě ARIMA modelem sezónní složky, jehož parametry se značí velkými písmeny a uvádějí v další závorce, celkem tedy ARIMA(p, d, q)(P, D, Q). Pokud je řád některé složky modelu nula, odpovídající část zkratky se může vypustit a například místo ARIMA(1, 0, 2) psát jenom ARMA(1, 2) nebo místo ARIMA(0, 0, 2) jen MA(2).Modely ARIMA se odhadují takzvanou Boxovou–Jenkinsovou metodou, kterou navrhli George Box a Gwilym Jenkins. Ta má tři kroky: Identifikace a výběr řádu modelu. Tato část analýzy má zjistit, jaké hodnoty řádů p, d, q resp. P, D, Q se mají nastavit. Zde se využívá analýzy autokorelací a parciálních autokorelací zkoumané časové řady. Odhad regresních koeficientů, obvykle metodou maximální věrohodnosti Testování modelu, především stacionarity jeho reziduí.
dbpedia-owl:wikiPageID
  • 1283957 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 2289 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 9 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 14898658 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
dbpedia-owl:wikiPageWikiLinkText
  • ARIMA
dcterms:subject
rdfs:comment
  • ARIMA (zkratka anglického AutoRegressive Integrated Moving Average, „autoregresní integrovaný klouzavý průměr“) je třída modelů časových řad, sloužících k pochopení vlastností časových řad a k předpovědi jejich chování do budoucnosti. Model ARIMA má tři části: autoregresní (AR) vyjadřuje, že část hodnoty časové řady se dá vysvětlit jako lineární kombinace minulých hodnot (tedy regrese „sama na sebe“, odkud je řecká předpona auto-, sám-).
rdfs:label
  • ARIMA
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of