Bezrozměrová veličina (často též bezrozměrná veličina, viz Jazyková poznámka) je taková veličina, která má v dané soustavě jednotek rozměr "jedna" (v algebře rozměrů jde o neutrální prvek); tuto vlastnost vystihuje přednostní název veličina s rozměrem jedna. Může však mít (i v rámci SI) jednotku se zvláštním názvem a značkou; taková jednotka se pokládá za odvozenou a je bezrozměrová (např. radián, steradián, decibel, neper, procento).

PropertyValue
prop-cs:wikiPageUsesTemplate
dbpedia-owl:abstract
  • Bezrozměrová veličina (často též bezrozměrná veličina, viz Jazyková poznámka) je taková veličina, která má v dané soustavě jednotek rozměr "jedna" (v algebře rozměrů jde o neutrální prvek); tuto vlastnost vystihuje přednostní název veličina s rozměrem jedna. Může však mít (i v rámci SI) jednotku se zvláštním názvem a značkou; taková jednotka se pokládá za odvozenou a je bezrozměrová (např. radián, steradián, decibel, neper, procento). Bezrozměrová veličina je obvykle definována jako součin či podíl veličin, které sice mají rozměry, ale rozměrové koeficienty jednotlivých základních veličin se ve výsledku vzájemně vykrátí. Jindy může být definována jako součin, podíl či funkce jiných bezrozměrových veličin. Obsahují-li vztahy popisující fyzikální zákony či definiční rovnice technických veličin exponenciální, logaritmické nebo goniometrické funkce, jsou jejich argumenty také bezrozměrovými veličinami.Příkladem bezrozměrových veličin jsou podobnostní čísla, bezrozměrová rychlost, součinitel smykového tření, index lomu, molární zlomek, konstanta jemné struktury, Lorentzův faktor nebo Boltzmannův faktor.Podobně jako u všech veličin neznamená rovnost rozměru stejný charakter veličiny (například teplo a moment síly). S bezrozměrovými veličinami nelze zacházet jako s pouhými čísly, ale je třeba mít na zřeteli jejich skutečný charakter, daný definicí veličiny, nikoli jednotkou (např. úhel není totéž co fáze, a proto radián nelze volně zaměňovat za 1 - viz např. článek úhlová frekvence). Někdy se pro snazší a korektní zacházení doplňují v praxi jednotky bezrozměrových veličin různými přívlastky či vyjadřují se jako podíly takto "upřesněných" stejných jednotek (cykl za sekundu namísto reciproké sekundy; gramy složky na 100 gramů roztoku nebo hmotnostní procento namísto procenta u objemového zlomku apod.), zpravidla to však neodpovídá pravidlům pro veličiny a jednotky (např. příručce SI). Kvůli nespecifičnosti bezrozměrových jednotek bývá někdy kritizována i současná podoba soustavy SI.Zavedeme-li koherentní soustavu jednotek, tj. odvozené jednotky budou definovány pomocí jednotek základních jednotkovými rovnicemi bez dodatečných číselných koeficientů, můžeme se všemi veličinami dané soustavy zacházet jako s bezrozměrovými. Není to však obvyklé, protože se tím ztrácí informace o kvalitativní stránce veličin.
dbpedia-owl:wikiPageID
  • 190061 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 5003 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 36 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 13956337 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
dbpedia-owl:wikiPageWikiLinkText
  • '''bezrozměrnými'''
  • bezrozměrná veličina
  • bezrozměrný
  • bezrozměrných
  • bezrozměrová veličina
  • bezrozměrná
  • bezrozměrná fyzikální veličina
  • bezrozměrných veličinách
  • Bezrozměrná veličina
  • bezrozměrného
  • bezrozměrové veličiny
  • bezrozměrnou veličinu
  • bezrozměrné veličiny
  • bezrozměrném
  • bezrozměrné
  • veličiny s fyzikálním rozměrem 1
dcterms:subject
rdfs:comment
  • Bezrozměrová veličina (často též bezrozměrná veličina, viz Jazyková poznámka) je taková veličina, která má v dané soustavě jednotek rozměr "jedna" (v algebře rozměrů jde o neutrální prvek); tuto vlastnost vystihuje přednostní název veličina s rozměrem jedna. Může však mít (i v rámci SI) jednotku se zvláštním názvem a značkou; taková jednotka se pokládá za odvozenou a je bezrozměrová (např. radián, steradián, decibel, neper, procento).
rdfs:label
  • Bezrozměrná veličina
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of