Intuicionistická logika je druh logiky, který nepoužívá princip vyloučeného třetího. Pravdivostní hodnoty 0 a 1 v ní znamenají „není možno zkonstruovat“ a „je možno zkonstruovat“. Na rozdíl od běžné (například aristotelské) logiky neplatí princip negace negace.
Property | Value |
prop-cs:wikiPageUsesTemplate
| |
dbpedia-owl:abstract
|
- Intuicionistická logika je druh logiky, který nepoužívá princip vyloučeného třetího. Pravdivostní hodnoty 0 a 1 v ní znamenají „není možno zkonstruovat“ a „je možno zkonstruovat“. Na rozdíl od běžné (například aristotelské) logiky neplatí princip negace negace. Například implikace:Něco nemůže neexistovat ⇒ musí to existovatv intuicionistické logice obecně neplatí.Taková implikace je použita například při důkazu věty z matematické analýzy, podle níž z každé omezené posloupnosti lze vybrat konvergentní podposloupnost. Nemožnost takového výběru lze snadno dovést do sporu. Z hlediska intuicionistické logiky je ale takový důkaz chybný, protože nedává obecný návod ke konstrukci limity takové posloupnosti v konečném počtu kroků.Intuicionistická logika úzce souvisí s teorií vyčíslitelnosti. Pravdivost v intuicionistické logice lze ztotožnit s algoritmickou řešitelností.Sémanantiku intuicionistické logiky zachycuje Heytingova algebra.
|
dbpedia-owl:wikiPageID
| |
dbpedia-owl:wikiPageLength
| |
dbpedia-owl:wikiPageOutDegree
| |
dbpedia-owl:wikiPageRevisionID
| |
dbpedia-owl:wikiPageWikiLink
| |
dbpedia-owl:wikiPageWikiLinkText
|
- Intuicionistická logika
- intuicionistická logika
- intuicionistické logice
- intuicionistickou logiku
- intuicionistické logiky
|
dcterms:subject
| |
rdfs:comment
|
- Intuicionistická logika je druh logiky, který nepoužívá princip vyloučeného třetího. Pravdivostní hodnoty 0 a 1 v ní znamenají „není možno zkonstruovat“ a „je možno zkonstruovat“. Na rozdíl od běžné (například aristotelské) logiky neplatí princip negace negace.
|
rdfs:label
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbpedia-owl:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |