Penroseovo dláždění (anebo také Penroseho pokrytí) je neperiodické dláždění roviny, generované pomocí konečné množiny základních typů dlaždic. Neperiodický znamená, že není invariantní vůči žádnému posunutí, t.j. žádné posunutí nezobrazí dláždění na sebe sama. Dláždění bylo pojmenováno po anglickém matematikovi a fyzikovi jménem Roger Penrose, který se touto problematikou zabýval v 70. letech 20. století.
Property | Value |
prop-cs:jazyk
| |
prop-cs:revize
| |
prop-cs:wikiPageUsesTemplate
| |
prop-cs:článek
| |
dbpedia-owl:abstract
|
- Penroseovo dláždění (anebo také Penroseho pokrytí) je neperiodické dláždění roviny, generované pomocí konečné množiny základních typů dlaždic. Neperiodický znamená, že není invariantní vůči žádnému posunutí, t.j. žádné posunutí nezobrazí dláždění na sebe sama. Dláždění bylo pojmenováno po anglickém matematikovi a fyzikovi jménem Roger Penrose, který se touto problematikou zabýval v 70. letech 20. století. Penroseovo dláždění může být zkonstruováno tak, aby bylo osově souměrné i invariantní vůči otočení kolem jednoho bodu, jako na obrázku.
|
dbpedia-owl:thumbnail
| |
dbpedia-owl:wikiPageExternalLink
| |
dbpedia-owl:wikiPageID
| |
dbpedia-owl:wikiPageLength
| |
dbpedia-owl:wikiPageOutDegree
| |
dbpedia-owl:wikiPageRevisionID
| |
dbpedia-owl:wikiPageWikiLink
| |
dbpedia-owl:wikiPageWikiLinkText
|
- Penroseho pokrytí
- Penroseovo dláždění
- Penrosovu dlažbu
|
dcterms:subject
| |
rdfs:comment
|
- Penroseovo dláždění (anebo také Penroseho pokrytí) je neperiodické dláždění roviny, generované pomocí konečné množiny základních typů dlaždic. Neperiodický znamená, že není invariantní vůči žádnému posunutí, t.j. žádné posunutí nezobrazí dláždění na sebe sama. Dláždění bylo pojmenováno po anglickém matematikovi a fyzikovi jménem Roger Penrose, který se touto problematikou zabýval v 70. letech 20. století.
|
rdfs:label
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbpedia-owl:wikiPageRedirects
of | |
is dbpedia-owl:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |