dbpedia-owl:abstract
|
- Vektorový prostor (též lineární prostor, anglicky vector space) je ústředním objektem studia lineární algebry, v jehož rámci jsou definovány všechny ostatní důležité pojmy této disciplíny. V jistém smyslu můžeme vektorový prostor chápat jako zobecnění množiny reálných, potažmo komplexních, čísel. Podobně jako v těchto množinách je i ve vektorovém prostoru definována operace sčítání a násobení s jistými přirozenými omezeními jako asociativita apod. Prvek vektorového prostoru se nazývá vektor (angl. vector). Na vektorovém prostoru je důležité, že má lineární matematickou strukturu, tzn. dva vektory lze sečíst, přičemž tento součet je opět prvkem vektorového prostoru, a totéž platí i pro násobek vektoru. S konceptem vektorového prostoru se lze setkat v nejrůznějších odvětvích matematiky i fyziky. Tvoří základ, v rámci něhož lze elegantně popisovat a řešit jak úlohy numerické matematiky, tak třeba i úlohy chování fyzikálních systémů v klasické či kvantové mechanice.
|